Pressure ( 4 ATA) increases membrane conductance and firing rate in the rat solitary complex

نویسندگان

  • Daniel K. Mulkey
  • Richard A. Henderson
  • Robert W. Putnam
  • Jay B. Dean
چکیده

Mulkey, Daniel K., Richard A. Henderson III, Robert W. Putnam, and Jay B. Dean. Pressure ( 4 ATA) increases membrane conductance and firing rate in the rat solitary complex. J Appl Physiol 95: 922–930, 2003. First published April 18, 2003; 10.1152/japplphysiol.00865. 2002.—Neuronal sensitivity to pressure, barosensitivity, is illustrated by high-pressure nervous syndrome, which manifests as increased central nervous system excitability when heliox or trimix is breathed at 15 atmospheres absolute (ATA). We have tested the hypothesis that smaller levels of pressure ( 4 ATA) also increase neuronal excitability. The effect of hyperbaric helium, which mimics increased hydrostatic pressure, was determined on putative CO2/H -chemoreceptor neurons in the solitary complex in rat brain stem slices by intracellular recording. Pressure stimulated firing rate in 31% of neurons (barosensitivity) and decreased input resistance. Barosensitivity was retained during synaptic blockade and was unaffected by antioxidants. Barosensitivity was distributed among CO2/H -chemosensitive and -insensitive neurons; in CO2/H -chemosensitive neurons, pressure did not significantly reduce neuronal chemosensitivity. We conclude that moderate pressure stimulates certain solitary complex neurons by a mechanism that possibly involves an increased cation conductance, but that does not involve free radicals. Neuronal barosensitivity to 4 ATA may represent a physiological adaptive response to increased pressure or a pathophysiological response that is the early manifestation of high-pressure nervous syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure (< or=4 ATA) increases membrane conductance and firing rate in the rat solitary complex.

Neuronal sensitivity to pressure, barosensitivity, is illustrated by high-pressure nervous syndrome, which manifests as increased central nervous system excitability when heliox or trimix is breathed at >15 atmospheres absolute (ATA). We have tested the hypothesis that smaller levels of pressure (<or=4 ATA) also increase neuronal excitability. The effect of hyperbaric helium, which mimics incre...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Hyperbaric oxygen and chemical oxidants stimulate CO2/H+-sensitive neurons in rat brain stem slices.

Hyperoxia, a model of oxidative stress, can disrupt brain stem function, presumably by an increase in O2 free radicals. Breathing hyperbaric oxygen (HBO2) initially causes hyperoxic hyperventilation, whereas extended exposure to HBO2 disrupts cardiorespiratory control. Presently, it is unknown how hyperoxia affects brain stem neurons. We have tested the hypothesis that hyperoxia increases excit...

متن کامل

Evidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes

Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003